
78 The Delphi Magazine Issue 67

The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi
Clinic Editor, on clinic@blong.com

Transfer Efficiency

QI’m making DLLs that are
uploaded to a web server for

a web app to use. Each time I make
a change I have a big file to upload.
How can I make the DLL smaller?

AWhen compiling any DLL
or EXE in Delphi, we all

normally fall foul of one of the
primary benefits of the Delphi
development system. This might
be a bit like teaching your grand-
mother to suck eggs (although I’ve
never tried this, so am going on
rumours), but Delphi makes Win-
dows development easy by provid-
ing the rich and well-formed VCL.
The VCL is a class hierarchy which
makes use of a lot of inheritance
and polymorphism.

Polymorphism is all about
deciding which object methods to
execute at runtime, based on
which object is actually being
manipulated. It allows code to be
written generically, without having
to worry all the time about the
specific class types of objects.
Treating all objects as if they are of
a common, generic class type,
rather than their actual class
means you do not have to cater for
all the special cases that come
along. The compiler makes sure
that the method from the right
class is executed at runtime, even
though at compile-time, the com-
piler will not know which class this
will ultimately be.

To allow polymorphism to work,
the compiler must compile in all
the appropriate polymorphic
methods into the executable file.
When a number of objects are
treated as a generic class type,
the polymorphic methods of all
the classes inherited from that
base class must be present in the
executable in order to guarantee
that polymorphism will still be

able to work under all possible
outcomes.

It is this requirement that causes
Delphi executables to swell. Delphi
has a smart linker which can strip
out any routines that are known
not to be called (procedures, func-
tions and non-polymorphic meth-
ods), but polymorphism defeats
the smart linker, leading to these
big files. A do-nothing Delphi 5
application compiles to 286Kb with
my default compiler settings.

One way to combat these large
files, particularly in an environ-
ment where you need to send many
updated versions of the files, or
have many applications installed
on a given machine, is to use
runtime packages.

Packages were introduced in
Delphi 3 and are specialised DLLs
that contain code that can be
transparently used in multiple
applications. Borland supply a
number of standard packages that
contain the whole VCL and RTL.
These can be uploaded onto your
web server and can be used from
that point on.

Because they must fulfil any
application’s requirements, the
packages have all the routines,
methods (both polymorphic and
not) and variables compiled into
them, and so seem quite large in
themselves (for example, the main
Delphi 5 VCL package, VCL50.BPL,
is over 1.9Mb in size). However, if
you compile with the option
turned on to make use of runtime
packages (Project | Options... |
Packages | Build with run-time
packages), your executables and
DLLs will shrink markedly.

It should be noted that, due to
the way packages work, you are
generally advised to use either
DLLs only, or packages only. In
other words, rebuild your web
application to use runtime pack-
ages (which will make the

executable smaller). Then look
into putting the code currently in
your DLL into a custom package of
your own. Make sure the web
application is told about this
new runtime package (again, the
Packages page of the Project
Options dialog).

Details of how to build and make
use of custom packages is outside
the scope of this column (well, to
be truthful, it would fill it up and
not leave room for any other sub-
jects). Anyway, I’m sure it must
have been covered in a past issue
(time to make use of your Collec-
tion 2000 CD) so I won’t cover it
here.

After all this, your web app will
be small, and the custom package
(which used to be a DLL) will also
be very small and much easier to
upload.

Transient Stay-On-Top

QThanks for your Drag And
Dock article in Issue 63. It

opened up a whole lot of new ideas
for me. However, I have noticed
that, whilst undocked controls
reside in floating windows that
stay on top of other forms in the
same application, they do not stay
on top of windows in other
applications.

I desperately want this to be the
case and have tried several things
to no avail. I gave the floating
window (the TCustomDockForm) a
FormStyle of fsStayOnTop. I also
tried passing its window handle to
SetWindowPos with a flag of
HWND_TOPMOST and to SetWindowLong
with GWL_EXSTYLE and WS_EX_PAL-
ETTEWINDOW flags which should
request the same thing. I didn’t get
anywhere.

AI had a quick look in the VCL,
and the fsStayOnTop flag is

implemented through a call to:

March 2001 The Delphi Magazine 79

SetWindowPos(Handle,
HWND_TOPMOST, 0, 0, 0, 0,
SWP_NOMOVE or SWP_NOSIZE or
SWP_NOACTIVATE);

so calling the API directly won’t
help. In any case, the TCustom-
DockForm constructor sets its
FormStyle to fsStayOnTop, so setting
it again will do nothing more.

The reason for the problem is
that when the application is
deactivated (which means another
application is activated and given
input focus), the Application
object takes steps, which are
reversed when the application is
re-activated.

Application knows when the pro-
gram is being activated or deacti-
vated as it is sent a WM_ACTIVATEAPP
message with a True or False
parameter respectively.

If the application is being deacti-
vated, it turns all stay-on-top win-
dows into normal windows using
its NormalizeTopMosts method. It
then sends itself a CM_DEACTIVATE
message, which ends up triggering
the OnDeactivate event handler, if
present.

If the app is being activated, it
restores all previously stay-on-top
windows back to stay-on-top win-
dows with its RestoreTopMosts
method. It then sends itself a
CM_ACTIVATE message, which ends
up triggering the OnActivate event
handler, if present.

So the fact that stay-on-top win-
dows are only stay-on-top whilst
your application is active is
actually by design. The reason, in
case you are interested, is that it
is not uncommon for a Delphi

application to invoke external
dialogs (such as the Windows
common dialogs using the compo-
nents on the Dialogs page of the
Component Palette).

If stay-on-top windows were left
as stay on top when an external
dialog was invoked, the dialog may
get irritatingly obscured by them.

To overcome the problem,
programmatically set up an
OnDeactivate event handler for the
Application object and reverse the
situation by calling Application.-
RestoreTopMosts from it (see Listing
1).

If you are using Delphi 5 or later,
you will find it easier to drop a
TApplicationEvents component on
the form (from the Additional page
of the Component Palette) and use
the Object Inspector to make an
OnDeactivate event handler from
where you can call the Application
method.

Drag And Drop And Scrolling

QWhen dragging from a list-
view to a treeview, how do

you get the treeview to scroll like
Windows Explorer does?

AThe answer is that you have
to do it manually, by check-

ing where the mouse is and scroll-
ing as appropriate. Let’s look at a
solution that will work just as well
with memos, rich edits and other
scrollable controls as it will with
treeviews.

The goal is that when the user is
dragging from some control over
your treeview (or whatever it is), if
the mouse position is somewhere
near the edge of the control, the
control starts scrolling in the
appropriate direction. This means

type
TForm1 = class(TForm)
procedure FormCreate(Sender: TObject);

private
public
procedure ApplicationOnDeactivateHandler(Sender: TObject);

end;
...
procedure TForm1.FormCreate(Sender: TObject);
begin
//Manually set up event handler for Application event
Application.OnDeactivate := ApplicationOnDeactivateHandler

end;
procedure TForm1.ApplicationOnDeactivateHandler(Sender: TObject);
begin
//When app is deactivated, fix stay-on-top windows
Application.RestoreTopMosts

end;

➤ Listing 1: Overcoming the
stay-on-top problem.

80 The Delphi Magazine Issue 67

the code to perform the scrolling
task must be placed in the tree-
view’s OnDragOver event handler.

Firstly, let’s set up a simple drag
and drop application (a finished
version can be found on the disk as
DragScroll.dpr). The question
mentioned dragging from a list-
view to a treeview, but to keep
things straightforward, our appli-
cation will allow dragging from a
label. Place a label component on
the form and set the DragMode prop-
erty to dmAutomatic.

Now place a treeview compo-
nent on the form and use the Items
property editor to give it lots of
nodes. In the form’s OnCreate event
handler, call the treeview’s Full-
Expand method to expand all the
nodes in the tree.

Next, place a memo component
on the form, set the ScrollBars
property to ssBoth and enter lots of
text into the Lines property of the
memo. Now make an event handler
for the treeview’s OnDragOver event
handler and make the memo’s
OnDragOver event share the event
handler. If you want, you can
rename the event handler in the

Object Inspector to make it look
more generic.

Finally, drop a timer component
on the form, with its Enabled
property set to False. The timer
will perform the actual scroll
operations when needed.

OnDragOver has a State parame-
ter that specifies whether the
mouse is entering the control’s
screen area, moving over the con-
trol or leaving the control’s area.
Each time the mouse is moved
around the control, the event
handler must check where it is.

If the mouse is close to one of the
edges of the control (or to two
edges, if the mouse is near a
corner), then this information
must be recorded. Another way of
saying this is that it must be noted
if the mouse is in a small inset
region inside the border of the con-
trol, shown in light blue in Figure 1.
Assuming the mouse is over the
target control’s inset region, peri-
odically a scroll operation must be
invoked in that direction. That’s
the short version. Now let’s look at
the details.

Windows defines some con-
stants for the default values that
are used in this type of operation.
The default width of the inset
region is 11 pixels, as defined by
the DD_DEFSCROLLINSET constant in
the ActiveX unit. The default delay
before scrolling starts is 50ms

(DD_DEFSCROLLDELAY) and the
default gap between each succes-
sive scroll, once scrolling has
started, is also 50ms (DD_DEF-
SCROLLINTERVAL).

These defaults can apparently
be updated by modifying the
DragScrollInset, DragScrollDelay
and DragScrollInterval entries in
the [windows] section of WIN.INI,
according to Inside OLE by Kraig
Brockschmidt, but I have a suspi-
cion this might be a 16-bit
Windows thing as I can find no
other references to them.type

TScrollDir =
(sdUp, sdLeft, sdDown, sdRight);
TScrollDirs = set of TScrollDir;

// Data fields defined in the form
ScrollDirs: TScrollDirs;
Ctrl: TWinControl;
...
procedure TForm1.SharedDragOver(Sender, Source: TObject; X,
Y: Integer; State: TDragState; var Accept: Boolean);

var
// Control's windows style and extended window style
Style, ExStyle, HorzSclHt, VertSclWd, //Scroll bar sizes
Left, Right, Top, Bottom: Integer;

begin
Ctrl := Sender as TWinControl;
case State of
dsDragEnter, dsDragLeave: Timer1.Enabled := False;
dsDragMove:
begin
// Get window styles to see if there are scroll
// bars/borders
Style := GetWindowLong(Ctrl.Handle, GWL_STYLE);
ExStyle := GetWindowLong(Ctrl.Handle, GWL_EXSTYLE);
// Record scroll bar size, taking into account they
// might not be there
HorzSclHt := 0;
VertSclWd := 0;
if Style and WS_HSCROLL <> 0 then
HorzSclHt := GetSystemMetrics(SM_CYHSCROLL);

if Style and WS_VSCROLL <> 0 then
VertSclWd := GetSystemMetrics(SM_CXVSCROLL);

// Record bounding dimensions of control's area,
// taking into account borders and scroll bars
Left := 0;
Top := 0;
Right := Ctrl.Width - 1 - VertSclWd;
Bottom := Ctrl.Height - 1 - HorzSclHt;
if (Style and WS_BORDER <> 0) or (ExStyle and
WS_EX_CLIENTEDGE <> 0) then begin

Left := GetSystemMetrics(SM_CXEDGE);
Top := GetSystemMetrics(SM_CYEDGE);
Dec(Right, Left);
Dec(Bottom, Top);

end;
// Check if over a scroll bar, in which case reject
// drop
if ((X >= Right) and (X <= Right + VertSclWd)) or
((Y >= Bottom) and (Y <= Bottom + HorzSclHt))
then begin
Accept := False;
Exit;

end;
//Initialise to no scrolling direction
ScrollDirs := [];
//See if in scroll region
if (X >= Left) and (X < Left + DD_DEFSCROLLINSET) then
ScrollDirs := ScrollDirs + [sdLeft];

if (X >= Right - DD_DEFSCROLLINSET) and
(X < Right) then
ScrollDirs := ScrollDirs + [sdRight];

if (Y >= Top) and (Y < Top + DD_DEFSCROLLINSET) then
ScrollDirs := ScrollDirs + [sdUp];

if (Y >= Bottom - DD_DEFSCROLLINSET) and
(Y < Bottom) then
ScrollDirs := ScrollDirs + [sdDown];

// If so, reset timer tick and record which region
if ScrollDirs <> [] then begin
Timer1.Interval := DD_DEFSCROLLDELAY;
Timer1.Enabled := True;

end
end;

end
end;

➤ Listing 2: Some useful types.

➤ Listing 3: The shared
OnDragOver event handler.

➤ Figure 1: The scrolling inset
region of a control.

March 2001 The Delphi Magazine 81

Some simple comparisons of the
co-ordinates passed in the X and Y
parameters of the OnDragDrop event
handler will tell us if the mouse is in
the inset region, and if so, where-
abouts. To record which part it is
in, a couple of type definitions are
useful. An enumerated type
defines the four primary scroll
directions, but since the mouse
might be, for example, at the
top-left of the control, warranting
an upwards and leftwards scroll, a
set type is also defined to help
store multiple values.

The main code is in the shared
OnDragOver event handler (see List-
ing 3). It starts off trying to work
out the bounding area of the con-
trol that is appropriate for the
mouse to be over in the first place.
This must not include any borders
(introduced with the BorderStyle
property) or scroll bars that may
be present. The GetSystemMetrics
and GetWindowLong APIs are useful
tools in these calculations.

Once this area is known, the
position of the mouse can then be
examined. If it is in the inset region,
appropriate values are added into

a set variable. If the mouse is over a
scroll bar, the drag operation is
rejected, causing the mouse cursor
to turn into a No Entry sign.

Once the comparisons have
been made, the set variable will be
empty if the mouse is not in the
inset region. If, however, the set is
not empty, then a timer compo-
nent has its Interval property set
to DD_DEFSCROLLDELAY and is
enabled. Admittedly, the value of
50ms is smaller than the granular-
ity of Windows timers (which is
55ms at best), but we are fairly
close.

The timer’s code can be seen in
Listing 4. Depending which values
are found in the set, the control is
scrolled in that direction by one
unit. The timer’s interval is then set

to the other time constant,
DD_DEFSCROLLINTERVAL. The timer is
eventually disabled when the
mouse is moved off the control or
the drag operation is cancelled in
some way (the OnDragOver event
handler’s State parameter will be
dsDragLeave).

For more information on VCL
drag and drop see my articles on
the subject in Issues 56 and 57.
For details on inter-application
drag and drop, as implemented by
a variety of Windows applications,
such as Windows Explorer, see my
article in Issue 58.

procedure TForm1.Timer1Timer(Sender: TObject);
begin
//Depending which region, scroll as appropriate
if sdLeft in ScrollDirs then
Ctrl.Perform (WM_HSCROLL, SB_LINELEFT, 0);

if sdRight in ScrollDirs then
Ctrl.Perform (WM_HSCROLL, SB_LINERIGHT, 0);

if sdUp in ScrollDirs then
Ctrl.Perform (WM_VSCROLL, SB_LINEUP, 0);

if sdDown in ScrollDirs then
Ctrl.Perform (WM_VSCROLL, SB_LINEDOWN, 0);

Timer1.Interval := DD_DEFSCROLLINTERVAL
end;

➤ Listing 4:
A timer does the scrolling.

	Transfer Efficiency
	Transient Stay-On-Top
	Drag And Drop And Scrolling

